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Abstract 

Background. We present a fast version of the dynamics perturbation analysis (DPA) 
algorithm to predict functional sites in protein structures. The original DPA algorithm 
finds regions in proteins where interactions cause a large change in the protein 
conformational distribution, as measured using the relative entropy Dx. Such regions are 
associated with functional sites. 
 
Results. The Fast DPA algorithm, which accelerates DPA calculations, is motivated by 
an empirical observation that Dx in a normal-modes model is highly correlated with an 
entropic term that only depends on the eigenvalues of the normal modes. The eigenvalues 
are accurately estimated using first-order perturbation theory, resulting in a N-fold 
reduction in the overall computational requirements of the algorithm, where N is the 
number of residues in the protein. The performance of the original and Fast DPA 
algorithms was compared using protein structures from a standard small-molecule 
docking test set. For nominal implementations of each algorithm, top-ranked Fast DPA 
predictions overlapped the true binding site 94% of the time, compared to 87% of the 
time for original DPA. In addition, per-protein recall statistics (fraction of binding-site 
residues that are among predicted residues) were slightly better for Fast DPA. On the 
other hand, per-protein precision statistics (fraction of predicted residues that are among 
binding-site residues) were slightly better using original DPA. Overall, the performance 
of Fast DPA in predicting ligand-binding-site residues was comparable to that of the 
original DPA algorithm. 
 
Conclusions. Compared to the original DPA algorithm, the decreased run time with 
comparable performance makes Fast DPA well-suited for implementation on a web 
server and for high-throughput analysis. 
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Background 

Prediction of protein functional sites is a key aspect of protein function prediction [1], 
and can be an important step in identifying small-molecule interactions for drug 
discovery [2]. It can also potentially be used as a pre-processing step to reduce the search 
space in computational docking algorithms. There are many methods to predict functional 
sites—here we emphasize those that make use of analysis of protein structure and 
dynamics. Existing protein structure analysis methods are based on diverse principles, 
including: association of functional sites with surface clefts that have extreme values of 
volume [3-6] or other shape descriptors [7-11]; identifying spatial clusters of methyl 
probes that exhibit energetically favorable interactions with the protein [12]; association 
of functional sites with charged surface residues either in unfavorable electrostatic 
environments [13] or with anomalous predicted pH titration curves [14]; identifying 
spatial clusters of residues whose diversity appears to be correlated with changes in 
protein function [15, 16]; defining structural features (e.g. motifs) associated with 
functional sites [17-22]; identifying residues that are on average close to other residues in 
the protein (closeness centrality) [23-25]; and machine-learning prediction of functional 
sites/residues using sequence, structure, and chemical features from training sets [26-28]. 
Principles of methods that consider protein dynamics include association of functional 
sites with: hinge regions [29, 30]; regions where the harmonic vibrations are largely 
determined by high-frequency modes [31]; intrinsically disordered regions that are highly 
mobile in the absence of a molecular interaction partner [32]; and residues where 
mutations cause a large change in the couplings of local perturbations to remote, local 
changes in the distribution of folded vs. unfolded states of the protein [33]. Information 
from complementary methods may be integrated for functional site prediction [34, 35]. 
 
We recently developed an additional approach to prediction of protein functional sites 
that is based on analysis of protein dynamics [36-39]. To help motivate the approach, we 
note that cellular functions are regulated by molecular interactions that alter protein 
activity. To enable such control, protein activity, and therefore protein conformational 
distributions, must be susceptible to alteration by molecular interactions at functional 
sites. In other words, protein activity should be controllable by allosteric effects 
(allostery). 
 
Weber [40] recognized the importance of considering changes in the full conformational 

distribution to understand allostery, as opposed to considering mechanistic changes 
among discrete, well-defined structural states in earlier models due to Monod, Wyman, 
and Changeux [41]; and Koshland, Nemethy, and Filmer [42]. Weber’s perspective is 
well-aligned with more recent emphases on the need to consider allostery from a global 
thermodynamic/statistical perspective [33, 38, 39, 43-45]. It is also well-aligned with 
modern rate theories based on the control of protein activity by dynamical transitions 
among conformational substates [46], as originally suggested by spectroscopic assays of 
ligand-binding at low-temperature [47, 48]. 
 
Given the above considerations, we hypothesized that protein functional sites might tend 
to evolve at control points where interactions cause a large change in the protein 
conformational distribution [39]. To test this hypothesis, we developed a method called 



3 

dynamics perturbation analysis (DPA) to quantify changes in protein conformational 
distributions due to molecular interactions [38, 39], examined 305 protein structures from 
the GOLD docking test set [49], and found that interactions at small-molecule binding 
sites cause a relatively large change in protein vibrations [37].  
 
Motivated by these results, we developed a DPA-based algorithm that successfully 
predicts small-molecule binding sites at locations where interactions cause a large change 
in protein vibrations [37]. This method was evaluated in Ref. [37] using 305 proteins in 
the GOLD docking test set of protein-ligand structures [49]. For the test, only the top-
ranked functional site was selected and was used to predict the location of the ligand-
binding site. This is a relatively strict requirement; in other published methods for 
predicting functional sites (see, e.g., Ref. [11]), performance often is evaluated by 
allowing for any of several predicted functional sites to overlap a known ligand-binding 
site. The method produced at least one predicted functional site for 287 of the 305 
proteins in the test set. In 87% of cases (250 proteins), at least one predicted residue was 
in the ligand-binding site. The recall of binding-site residues (percentage of binding-site 
residues found among the predicted residues) was at least 30% for 80% of cases, and was 
at least 50% for 76% of the cases. The precision of the predicted residues (percentage of 
predicted residues found among the binding-site residues) was at least 30% for 68% of 
the cases, and was at least 50% for 44% of the cases. The statistical significance of the 
overlaps was assessed using a null model in which surface residues were randomly 
selected. Using the null model, a P-value was calculated to evaluate predictions for the 
250 proteins in which at least one predicted residue was in the ligand-binding site. The P-
value estimated the probability of obtaining a precision at least as high as the observed 
precision by randomly selecting surface residues (see Ref. [37] for details). For 87% of 
the cases, the P-value was 10-3 or smaller, indicating a statistically significant overlap. 
The performance of the DPA method compared favorably to that of a cleft analysis 
method for predicting ligand-binding residues. 
 
The original DPA algorithm is a highly innovative approach that performs well. 
However, the computational requirements limit the utility of the original method. For 
example, it takes about an hour to analyze a 150-residue protein domain using DPA, and 
the method doesn’t scale well to larger systems. Here, we report an improved algorithm 
based on use of first-order perturbation theory that will facilitate the use of DPA in high-
throughput scenarios and increase its utility, e.g., for web server applications. The 
algorithm, called Fast DPA, enables a dramatic decrease in the time required to predict 
protein functional sites, with performance that is comparable to the original DPA 
algorithm. 

Methods 

Dynamics perturbation analysis 

Our overall approach for predicting functional sites is based on a method called dynamics 
perturbation analysis (DPA) [37, 39]. In DPA, a protein is decorated with M surface 
points that interact with neighboring protein atoms, as illustrated for Protein Data Bank 
entry 1JEF [50] in Fig. 1. The protein conformational distribution P(x) is calculated in the 
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absence of any surface points, and M protein conformational distributions P
(m)(x) are 

calculated for the protein interacting with each point m. The conformational distributions 
are calculated using a coarse-grained model of molecular vibrations, and the distributions 
P

(m)(x) are calculated from models of the protein in complex with each surface point. The 
relative entropy, or Kullback-Leibler divergence [51], Dx

(m ) between P(x) and P(m)(x) is 
calculated for each point m, and is used as a measure of the change in the protein 
conformational distribution upon interacting with point m: 

 Dx

(m ) = d
3N

x P
(m )

x( )ln
P

(m )
x( )

P x( )
∫  (1)  

In the present case (unlike in other useful biological applications [52-56]), the relative 
entropy is not just an ad hoc measure; rather, it has real biophysical significance [36, 57]: 
kBTDx

(m ) , where T is the temperature and kB is Boltzmann’s constant, is the free energy 
required to change the protein conformational distribution from an equilibrium 
distribution P(x) to a non-equilibrium distribution P(m)(x). 
 
Thus far, DPA calculations have most often been performed using a simple model of 
protein vibrations—the elastic network model (ENM) [58-61]. In the ENM, Cα atoms are 
extracted from an atomic model of a protein, and an interaction network is generated by 
connecting springs between all atom pairs (i,j) separated by a distance less than or equal 
to a cutoff distance rc. Each spring has the same force constant γ, is aligned with the 
separation between the connected atoms, and has an equilibrium length equal to the 
distance dij between the atoms in the initial model. Thus, the potential energy is given by 

U x( )= γ 2 εij x i − x j − dij( )
2

i> j
∑ , where εij=1 if atoms i and j are connected, and εij=0 

otherwise. The interaction between the protein and a surface point m is modeled by 
connecting springs of force constant γs between the surface point and all protein atoms 
within a cutoff distance rs of the surface point. The protein coordinates are not modified 
in modeling the interaction. The dynamics are defined using normal mode analysis of the 
model. In this model, the reference distribution P(x) is given by 

 P x( )=
λi

2πkBT

 

 
 

 

 
 

1
2

i=1

3N ,λi ≠0

∏ e
−

1

2kBT
λi x−x 0( )⋅v i

2

 (2) 

In Eq. (2), N is the number of atoms in the protein; x0 is the equilibrium structure; and λi 
and vi are the ith eigenvalue and eigenvector of the Hessian H : hij = ∂U ∂x i∂x j x 0

. The 

perturbed distribution P
(m)(x) is similar to Eq. (2), but substituting the eigenvalues and 

eigenvectors λ i
m( ) and v i

m( ) of the pseudo-Hessian H 
m( )  for λi and vi. H 

m( )  is derived from 
the full Hessian H

m( ) for the protein model in the presence of  the surface point m: 

 H
m( ) =

HP

m( ) G
m( )

G
m( )T HS

m( )

 

 
  

 

 
   . (3) 
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The sub-matrix HP

m( ) couples the protein coordinates, the sub-matrix HS

m( ) couples the 
test-point coordinates, and the submatrix G

(m) couples the protein to the test point. In 
terms of these matrices, H 

m( )  is given by [38] 

 H 
m( ) = HP

m( ) − G
m( )HS

m( )−1
G

m( )T . (4) 

Using expressions for P(x) and P(m)(x), Eq. (1) becomes [38, 39] 

 Dx

(m ) =
1
2

log
λ i

(m )

λi

+
λ j

λ i
(m ) v i

(m ) ⋅ v j

2

j= 7

3N

∑ −1
 

 
  

 

 
  

i= 7

3N

∑  . (5) 

The first six modes involve zero eigenvalues and are ignored in the sums. Equation (5) is 
the central equation that enables DPA. 
 
To use DPA to predict functional sites, we make use of the fact that, empirically, the 
distribution of y = Dx

m( ) values on the surface of a protein calculated using Eq. (5) is 
observed to obey an extreme value distribution (Fig. 2), 

               ρ y( ) =
1

β
e

y −µ

β
−e

y − µ

β

.     (6) 

First, DPA is performed on a protein and the distribution of Dx

m( ) values is modeled using 

Eq. (6). Points with Dx

m( ) values in the upper 96% of the modeled distribution are selected 
and are spatially clustered. The clusters are ranked according to the mean value of Dx

m( )
 

within the cluster, and all clusters are considered to be potentially associated with a 
functional site. Finally, residues in the neighborhood of the clusters are selected and form 
the basis for functional site predictions. 

Fast dynamics perturbation analysis 

Fast DPA is based on a simple empirical observation: for dynamics defined by normal 
modes, the total value of Dx in Eq. (5) is highly correlated with just the first (entropic) 
term, 

        Dx

λ,(m ) =
1
2

log
λ i

(m )

λii= 7

3N

∑  .  (7) 

Hereafter we refer to Dx

λ,(m ) simply as Dx

λ . Observation of this correlation motivates the 
use of Dx

λ  as a surrogate for Dx  in DPA, and, because Dx

λ  only involves eigenvalues, 
creates an avenue for accelerating DPA. The acceleration arises because the eigenvalues 
of the normal models of the protein in the presence of test points are well-approximated 
using first order perturbation theory. In this approximation, the pseudo-Hessian H 

m( )  of 
the protein in the presence of point m is written as the Hessian H of the protein in the 
absence of the ligand plus a perturbation term δH 

m( ): 

 H (m ) = H + δH (m ), (8)    

where the expression for H 
m( )  is as in previous studies [37, 38]. To estimate the 

eigenvalues of H 
m( ) , we use the canonical first-order perturbation theory expression,  
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 λi

(m ) ≈ λi + v i

TδH 
(m )

v i , (9) 

where λi  is the ith eigenvalue of H.  
 
The Fast DPA algorithm is the same as the original DPA algorithm, except instead of 
using values of Dx, the analysis is based on values of Dx

λ  estimated using perturbation 
theory. (It is possible to evaluate all terms in Eq. (5) using first-order perturbation theory, 
but doing so would not accelerate the method because the computational cost is 
comparable to that of solving the full eigenvalue problem in original DPA.) 

Implementation of Fast DPA 

Our implementation of DPA and Fast DPA here follows our previous implementation of 
DPA for functional site prediction [37]. Given an input PDB structure, MSMS [62] was 
run with a 1.5 Å probe radius and a triangulation density of 1 vertex per Å2 to generate 
test points on the surface of the protein. As when using original DPA to predict functional 
sites, perturbations were calculated using every other point in the MSMS output (we also 
tried using every point, but this led to decreased performance in the precision measures). 
The cutoff rc for interactions between protein Cα atoms was 8.5 Å. For some proteins, 
this cutoff yielded more than six zero-frequency modes, indicating that the network of 
springs was too sparse (for example, if only one spring connects two domains, then free 
rotations about the spring yield two additional zero-frequency modes). In these cases, the 
connectivity of the elastic network model was increased by incrementing rc in 1 Å steps 
until the additional zero-frequency modes were eliminated. The cutoff rs for interactions 
between a test point and the protein was 14 Å, and the interaction strength between a test 
point and protein atoms was γs = 12γ, or 12 times the strength of the interaction between 
two protein atoms. Results are independent of the value of γ. 

Implementation of functional site prediction using DPA 

To predict functional sites, the distribution of y = Dx

m( ) values was fit using Eq. (6). Points 

with Dx

m( ) values in the upper 96% of the distribution were selected and spatially 
clustered using the OPTICS algorithm [63] with a distance threshold of 6 Å and a 
minimum of 3 points per cluster. Cα atoms within 6 Å of any point in a cluster were 
selected and were used to define predicted functional sites. The sites were ranked 
according to the mean value of Dx

m( ) within the corresponding cluster of points. Only the 
top-ranked predicted site was used for the evaluation of performance described below. 

Results and discussion 

Results that motivate Fast DPA 

To motivate the use of Dx

λ  instead of Dx  for DPA, we analyzed proteins from the GOLD 
test set. We found that Dx  is highly correlated with Dx

λ  for these cases; Fig. 3 illustrates 
the agreement for four proteins. This is not a trivial result mathematically (see Eqs. (5) 
and (7))—it means that log λ i

(m ) λi( )∑  is highly correlated with v i
(m) ⋅ v j

2
λ j λ i

(m )

j
∑

i
∑ .  
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To motivate the use of perturbation theory to estimate Dx

λ , we compared the true 
eigenvalues to those estimated using perturbation theory for proteins in the GOLD test 
set. Because in our model the strength of the spring that connects the test points to the 
protein is 12 times the strength of the spring that connects protein atoms to each other 
(Methods), it was not obvious that first-order perturbation theory would yield reasonable 
estimates of eigenvalues. However, we had hoped for success based on the fact that we 
were only adding a single test point to the model, compared to, typically, o(100) protein 
Cα atoms. As illustrated for lysozyme in Fig. 4, we did find that Eq. (9) approximates 
well the true eigenvalues obtained by diagonalization of H(m). Finally, we found that  Dx  
calculated using original DPA was highly correlated with Dx

λ  calculated using Fast DPA, 
as illustrated for four proteins in Fig. 5. 

Evaluation of Fast DPA for prediction of functional sites 

The above results motivated us to develop the Fast DPA algorithm for prediction of 
protein functional sites (Methods). Through use of first-order perturbation theory, Fast 
DPA replaces matrix diagonalization by matrix-vector multiplication for each test point 
(Eq. (9)). Because matrix diagonalization requires o(N3) operations, and matrix-vector 
multiplication requires o(N2) operations, we expected Fast DPA to run N-fold faster than 
the original DPA. We found this to be the case (Fig. 6): the original DPA scales roughly 
as N3.45, while fast DPA scales roughly as N2.29, yielding a factor of N1.16 decrease in the 
time required to perform Fast DPA vs. DPA (here, N is the number of residues in the 
protein).  
 
Because Dx calculated using original DPA and Dx

λ  calculated using Fast DPA are highly 
correlated (Fig. 5), we expected the performance of Fast DPA in predicting functional 
site residues to be comparable to that of the original DPA. We analyzed the performance 
of the algorithm on the 305-protein GOLD test set [49], which was used to evaluate the 
original DPA algorithm [37]. Each prediction has an associated recall (fraction of 
residues in the binding site that are among those in the rank-1 prediction) and precision 
(fraction of rank-1 predicted residues that are among those in the binding site). To 
evaluate performance statistically, we use (1) the fraction of binding sites for which the 
recall is greater than or equal to a minimum value, and (2) the fraction of fraction of rank-
1 predictions for which the precision is greater than or equal to a minimum value. 
 
Figure 7 compares the performance of Fast DPA using different thresholds of the extreme 
value distribution, and is equivalent to Fig. 8 in Ref. [37]. The nominal threshold of 0.96 
indicated in this figure is equivalent to that chosen for original DPA. Fig. 8 compares the 
performance of Fast DPA with original DPA for different thresholds. When the threshold 
is 0.96 or smaller, the recall statistics of Fast DPA tend to be better, and the precision 
statistics of original DPA tend to be better. When the threshold is 0.97 or higher, original 
DPA outperforms Fast DPA in both precision and recall statistics. 
 
At the nominal threshold value of 0.96, the performance of Fast DPA is comparable to 
that of original DPA. At this threshold, original DPA yielded 287 rank-1 predictions for 
the test set (rate of 94%), whereas Fast DPA yielded 267 rank-1 predictions (rate of 86%) 
(Table 1). However, Fast DPA makes 251 predictions that have at least one residue that 



8 

overlaps the binding site, while original DPA makes 250 such predictions, yielding a 
higher rate of locating binding sites for rank-1 Fast DPA predictions (94%) than for 
original DPA (87%)  (Table 1). The recall statistics tend to be a bit better for Fast DPA 
(Table 1, Fig. 9), and the precision statistics tend to be better for original DPA (Table 1, 
Fig. 10).   

Conclusions 

Use of Fast DPA enables functional site predictions to be performed N-fold faster than 
original DPA, with comparable performance in predicting residues in functional sites. 
The acceleration will facilitate optimization of Fast DPA for functional site predictions. 
Calculations that once took hours using DPA now may be performed in a matter of 
minutes, making practical the use of DPA via a web server. Indeed, high-throughput 
analysis using Fast DPA has already produced over 60,000 predicted functional sites for 
about 50,000 protein domains in the SCOP database [64] (J.D. Cohn, D. Ming, and M.E. 
Wall, in preparation). These predictions will provide a rich source of information for 
developing hypotheses concerning mechanisms of protein function. 
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Figure legends 

Figure 1. Application of Dynamics Perturbation Analysis (DPA) to predict protein 
functional sites. Left. In this example, the surface of lysozyme (PDB entry 1JEF [50], 
yellow cartoon) is decorated with test points (533 spheres at a density of 1 point per Å2), 
and the degree to which the test points individually perturb the protein conformational 
distribution is calculated (temperature-coded coloring of the spheres). A tri-NAG 
molecule (purple wireframe) binds in the active site. Warm-colored spheres indicate 
where the perturbation is large. Center. Points where the perturbation is largest are 
selected and clustered (green spheres). Right. Cα atoms within 6 Å of the DPA cluster are 
selected, and the associated residues define the predicted functional site (16 residues). For 
comparison, Cα atoms within 6 Å of the tri-NAG are selected; we use the associated 
residues to define the actual functional site (7 residues).  The overlapping residues (6 
residues) are shown in orange; there are 10 predicted residues that do not exactly match 
the functional site (green), and there is 1 functional site residue that is not among the 
predicted residues (purple, in the helix on the right hand side). 

 
Figure 2. Distribution of Dx

m( ) values for 4859 points on the surface of lysozyme 1JEF 
(the number of points was increased in this case to evaluate the fit). The distribution is 
well-fit by an extreme value distribution (Eq. (6)) with parameters µ = 23.07 and β = 8.45 
(solid line). By examining the cumulative distribution (dashed line), the fit is used to find 
surface points that lie within the upper 96% of the distribution; these points are used to 
predict functional sites. 

 

Figure 3. Values of Dx (y-axis) and Dx

λ  (x-axis) calculated using original DPA are 
plotted for four PDB entries (values of the Pearson correlation, C, between the two, are 
listed here parenthetically): a) 1AEC, from an actinidin-E-64 complex [65] (C = 0.988); 
b) 1FKI, from a FKBP complex [66] (0.989); c) 1JEF, from a lysozyme complex [50] 
(0.992); and d) 1STP, from a biotin complex [67] (0.989).  
 
Figure 4. Eigenvalues (used for calculation of Dx

λ ) that are estimated using perturbation 
theory (filled triangles) are a good approximation to the true eigenvalues of a lysozyme 
elastic network model (open circles). 

 
Figure 5. Values of Dx calculated using original DPA (y-axis) and Dx

λ  calculated using 
Fast DPA (x-axis) are plotted for four PDB entries (values of the Pearson correlation 
between the two are listed here parenthetically): a) 1AEC (0.981); b) 1FKI (0.982); c) 
1JEF (0.981); d) 1STP (0.980). 
 
Figure 6. Comparison of run times for DPA (upwards-pointing triangles) vs. Fast DPA 
(downwards-pointing triangles) for various protein sizes. The inset shows the ratio of run 
times for various protein sizes. 
 
Figure 7. Comparison of Fast DPA performance using different thresholds of the 
extreme value distribution (Eq. (6)). The y-axis is either the fraction of proteins for which 
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a prediction is made (squares), the fraction of binding sites with a recall of at least 0.5 
(circles), or the fraction of predictions with a precision of at least 0.5 (triangles). The 
threshold is indicated on the x-axis; the 0.96 threshold used for Figs. 9 and 10 is indicated 
using a vertical dashed line. 
 
Figure 8. Comparison of Fast DPA vs. original DPA precision and recall statistics at 
different thresholds of the extreme value distribution (Eq. (6)). The curves are similar to 
precision-recall curves: the y-axis is the fraction of binding sites with a recall of at least 
0.5, and the x-axis is the fraction of binding sites with a precision of at least 0.5. Fast 
DPA values are indicated using open squares, and original DPA is indicated using filled 
squares. Points corresponding to a threshold of 0.96 are indicated using arrows. 
 

Figure 9. Comparison of recall of binding-site residues using DPA vs. Fast DPA for 287 
(number of predictions using DPA) or 267 (number of predictions using Fast DPA) 
proteins in the 305-protein GOLD test set. The y-axis indicates the fraction of proteins 
with a recall at least as high as the value on the x-axis (y-values should be read from the 
top of each step). 

 
Figure 10. Comparison of precision of predicted residues using DPA vs. Fast DPA (see 
also Fig. 9). The y-axis indicates the fraction of proteins with a precision at least as high 
as the value on the x-axis (y-values should be read from the top of each step).  

Tables 

Table 1. Performance statistics for Fast DPA and original DPA using a threshold of 0.96. 
 
 Rank-1 

Predictionsa 
Any 
matchb 

Recall  
≥ 0.3c 

Precision 
≥ 0.3d 

Recall 
≥ 0.5c 

Precision 
≥ 0.5d 

Original 287 0.87 0.80 0.68 0.76 0.44 
Fast 267 0.94 0.86 0.65 0.75 0.38 
 

a Number of proteins for which at least one DPA cluster was produced, out of 305 total. 
b Fraction of rank-1 predictions that have at least one overlapping residue with the 
binding site. 
c Fraction of binding sites for which the recall was at least 0.3 or 0.5. 
d Fraction of predictions for which the precision was at least 0.3 or 0.5. 
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